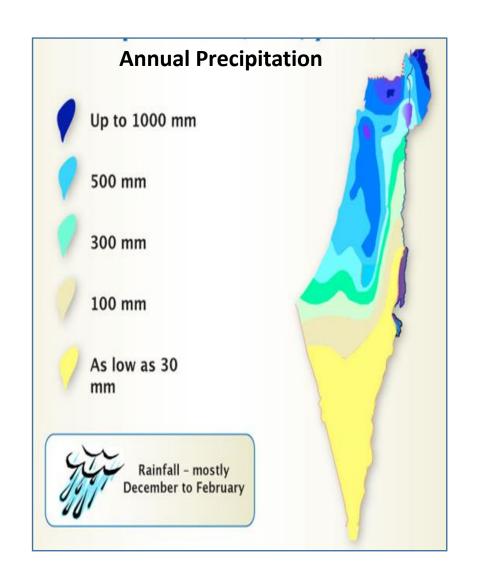
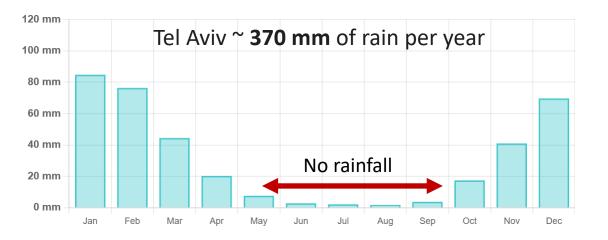
## WATER MANAGEMENT IN WATER-SCARE REGIONS THE ISRAELI CASE STUDY

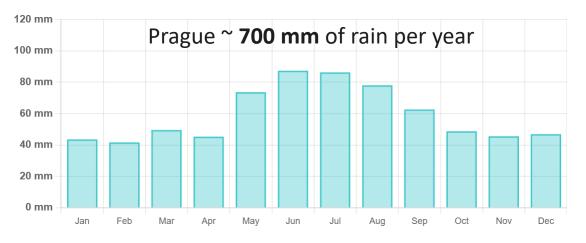
**Prof. Dr. Benny Chefetz** 

Director General
Agricultural Research Organization - Volcani Institute
Ministry of Agriculture and Food Security, ISRAEL





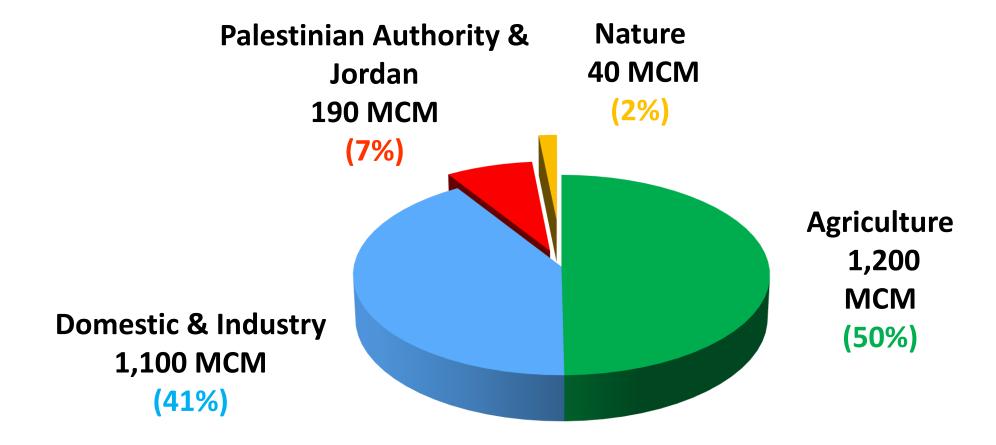





#### Climate: arid, semi-arid, no summer rainfall



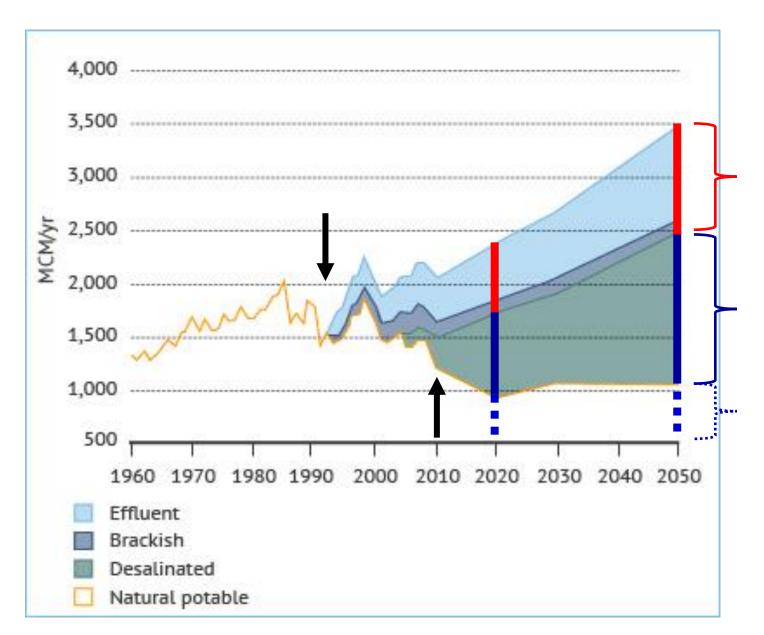
#### → irrigation is a MUST











## Water Supply (Israel) by sector Total: ~2,600 million cubic meter (MCM)





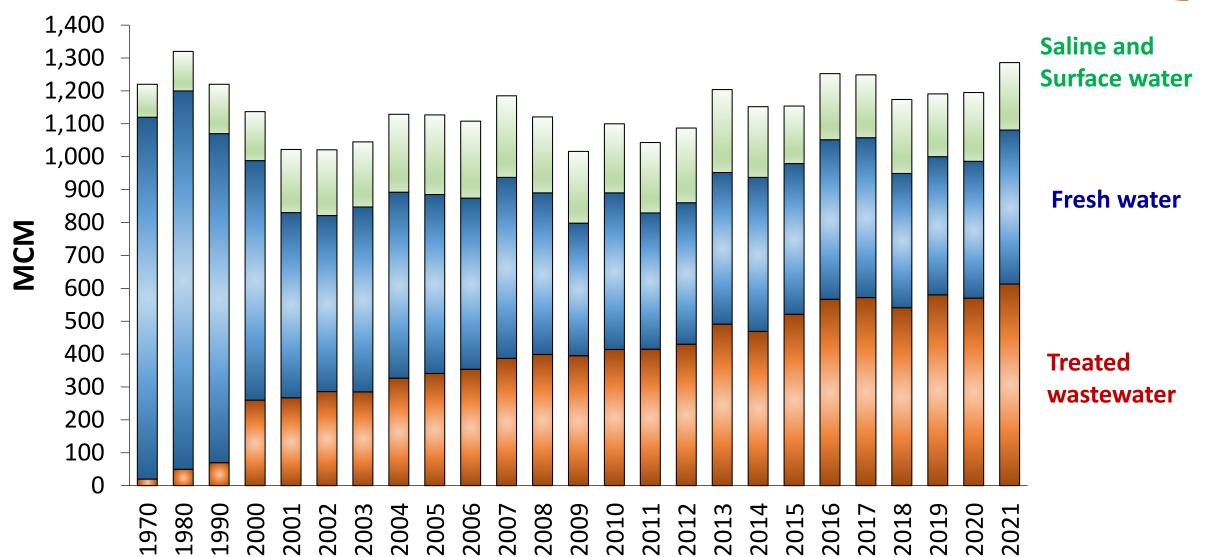
#### **ISRAEL** (and the whole Middle East) = absolute water scarcity





treated wastewater

= irrigation water


desalinated sea water

= potable water

ground/surface water

#### Water consumption by Ag according to source







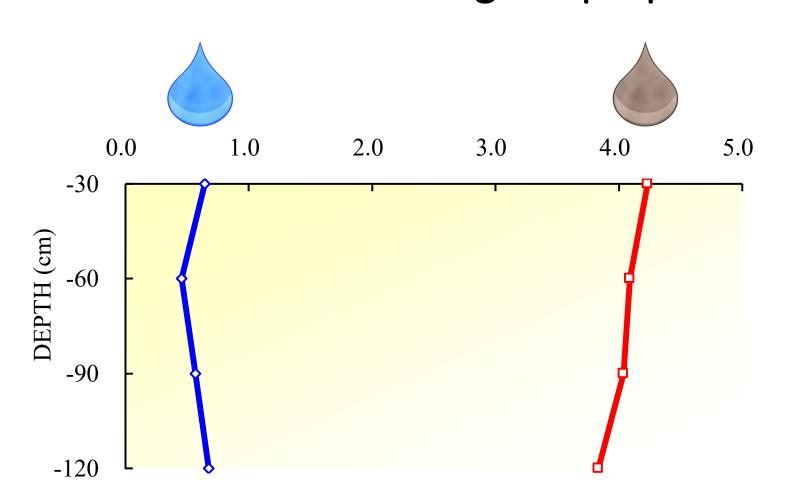
#### Treated wastewater is a new source of water

#### **Great solution !!!**

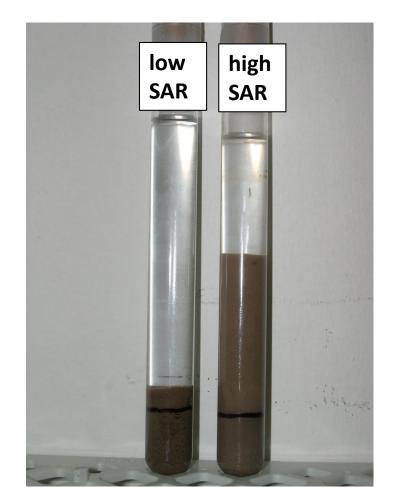
Maintaining fresh water resources
Ensuring public health
Economic growth engine for the Ag sector
Cost-effective water supply
Sustainable supply of water for the Ag sector



#### Negative aspects




(long-term irrigation with treated wastewater):


- Elevated salinity  $\rightarrow$  osmotic effect
- Toxicity of specific elements (Chloride, Boron, Sodium)
- High Na<sup>+</sup> concentration → high SAR (sodicity) values
- Particulate matter → clogging of irrigation equipment







swelling/shrinking



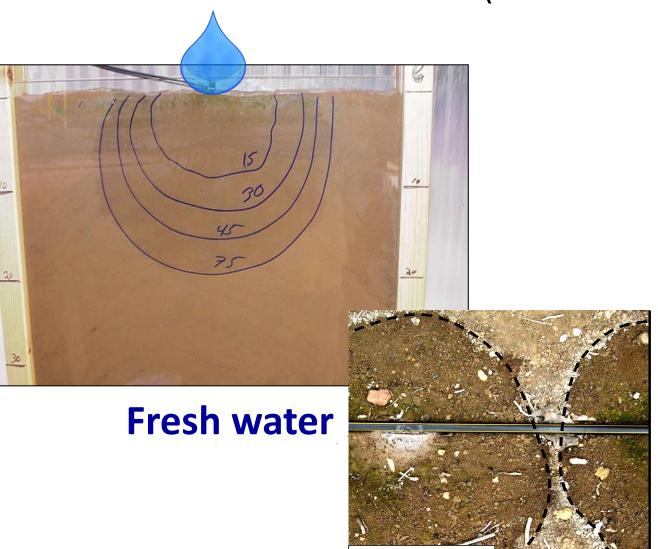
Israel Ministry of Agriculture - National Wastewater Survey



**Reclaimed Wastewater** 



Damage to Avocado by Boron (B)


(Anat Lowengart-Aycicegi et al.)

#### **Fresh water**



#### Water repellent → water percolation

(Chen and Tarchitzky)





Reclaimed Wastewater

#### Potential damage to irrigation equipment

<u>biofilms</u> → clogging of drippers



#### **REGULATION:** The use of treated wastewater for irrigation

| BOD               | mg/L                   | 10      |
|-------------------|------------------------|---------|
| TSS               | mg/L                   | 10      |
| COD               | mg/L                   | 100     |
| Fecal coliforms   | MPN/100 mL             | 10      |
| Dissolved oxygen  | mg/L                   | >0.5    |
| Residual chlorine | mg/L                   | 1       |
| рН                |                        | 6.5-8.5 |
| Total nitrogen    | mg/L                   | 25      |
| Ammonia           | mg/L                   | 20      |
| Total phosphorus  | mg/L                   | 5       |
| EC                | dS/m                   | 1.4     |
| SAR               | (meq/L) <sup>0.5</sup> | 5       |
| Chloride          | ррт                    | 250     |
| Sodium            | ppm                    | 150     |
| Boron             | ррт                    | 0.4     |
| Fluoride          | ppm                    | 2       |
|                   |                        |         |

Soil & Plant Health

High quality treated wastewater (10/10, BOD/TSS)

Disinfection + filtration + fecal coliforms 10 MPN/100 mL <u>unlimited irrigation</u>

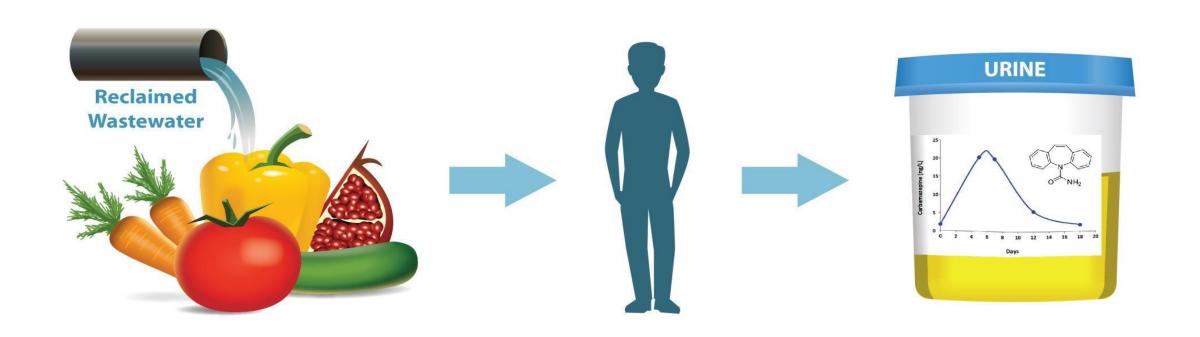
Medium quality of treated wastewater (20/30 to 60/90, BOD/TSS)

must have 3 barriers for irrigation

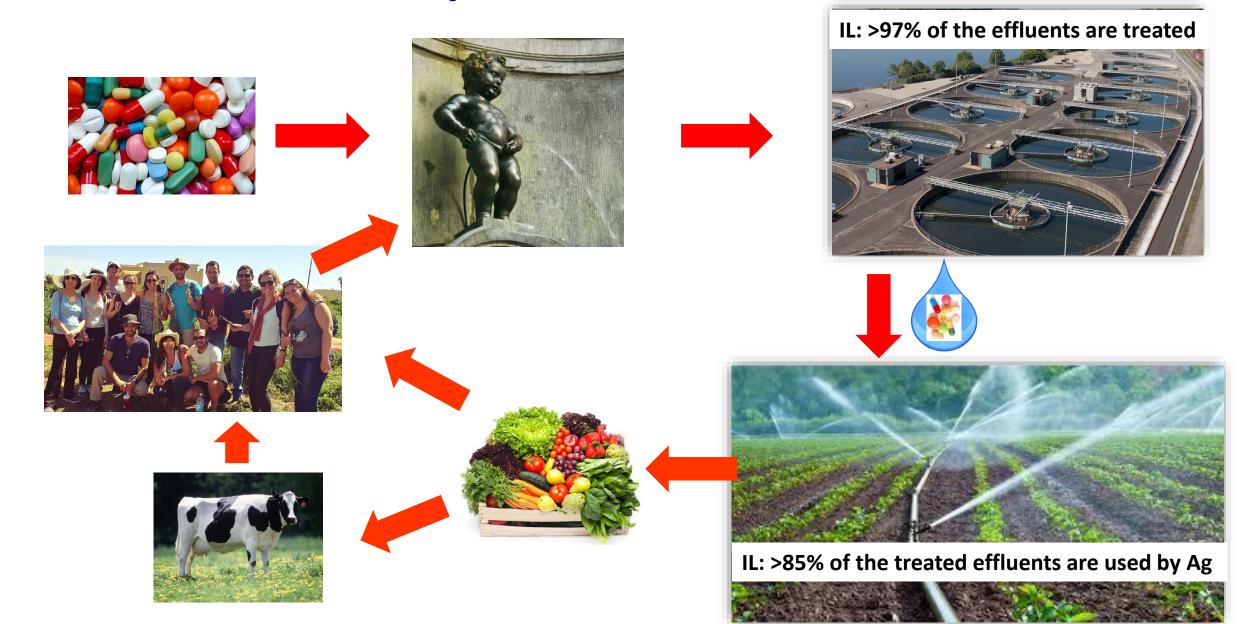
Low quality of treated wastewater (>60/90, BOD/TSS)

cannot be used for irrigation




#### Treated wastewater: quality standards/regulations

#### No guidelines


# for pharmaceuticals and/or personal care products in treated wastewater used for irrigation



# Introduction of pharmaceuticals, personal care products, PFAS and other chemicals (present in reclaimed wastewater) to our produce ( >> consumers)



### **Exposure scheme**





### Human Exposure to Wastewater-Derived Pharmaceuticals in Fresh Produce: A Randomized Controlled Trial Focusing on Carbamazepine

Ora Paltiel,\*\*,†,‡,§ Ganna Fedorova,<sup>§,||</sup> Galit Tadmor,<sup>†,§,||</sup> Geffen Kleinstern,<sup>†,§</sup> Yehoshua Maor,<sup>§</sup> and Benny Chefetz<sup>§,||</sup>

Environment International 143 (2020) 105951

Contents lists available at ScienceDirect

#### **Environment International**

journal homepage: www.elsevier.com/locate/envint



Involuntary human exposure to carbamazepine: A cross-sectional study of

correlates across the lifespan and dietary spectrum



Michael Schapira<sup>a</sup>, Orly Manor<sup>a</sup>, Naama Golan<sup>b</sup>, Dorit Kalo<sup>c</sup>, Vered Mordehay<sup>b</sup>, Noam Kirshenbaum<sup>b</sup>, Rebecca Goldsmith<sup>a,d</sup>, Benny Chefetz<sup>b,\*,1</sup>, Ora Paltiel<sup>a,\*,1</sup>

Tegretol® 200 mg
carbamazepine USP

100 tablets
PHARMACIST: Dispense with Medication Guide attached or provided separately.

U NOVARTIS

Rx only

NDC 0078-0509-05



Contents lists available at ScienceDirect

#### Water Research

journal homepage: www.elsevier.com/locate/watres





Wastewater-derived organic contaminants in fresh produce: Dietary exposure and human health concerns

Evyatar Ben Mordechay <sup>a,b,1</sup>, Tali Sinai <sup>a,c,1</sup>, Tamar Berman <sup>d</sup>, Rita Dichtiar <sup>c</sup>, Lital Keinan-Boker <sup>c,e</sup>, Jorge Tarchitzky <sup>a</sup>, Yehoshua Maor <sup>b</sup>, Vered Mordehay <sup>a</sup>, Orly Manor <sup>f</sup>, Benny Chefetz <sup>a,\*</sup>

#### **Consumption** → **Exposure** → **Risks**

#### Exposure assessment approach



#### conc. in edible $crop_{(i)} \times consumption of the <math>crop_{(i)}$

**Scenarios** 

**Mean** exposure

High exposure

**Worst-case** exposure

**Mean** concentration (produce)

**Maximum** concentration

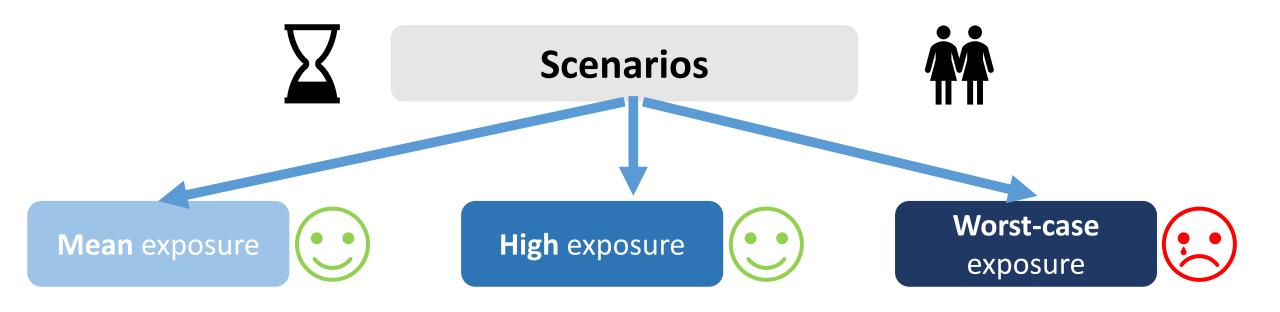
X

**Maximum** concentration

X

X

Mean consumption


95<sup>th</sup> percentile consumption

Mean consumption (produce)

#### Human exposure (ng/person\*day)

| Class               | Compound              | Mean                      | High   | Worst-case   | Worst-case exposure scenario |                   |             |         |
|---------------------|-----------------------|---------------------------|--------|--------------|------------------------------|-------------------|-------------|---------|
| Class               | Compound              | General population n=2808 |        | Males n=1341 | Females n=1467               | Vegetarians n=126 | Arabs n=491 |         |
| Analgesics          | 4-Aminoantipyrine     | 3                         | 20     | 110          | 110                          | 120               | 230         | 70      |
|                     | Acetaminophen         | 1                         | 10     | 60           | 60                           | 60                | 70          | 110     |
| Antiarrhythmics     | Atenolol              | 1                         | 30     | 160          | 170                          | 160               | 190         | 280     |
|                     | Bisoprolol            | 0                         | 1      | 7            | 7                            | 7                 | 8           | 10      |
|                     | Metoprolol            | 0                         | 1      | 7            | 7                            | 7                 | 8           | 10      |
|                     | Sotalol               | 0                         | 10     | 50           | 50                           | 50                | 60          | 80      |
|                     | Carbamazepine         | 870                       | 5,700  | 27,200       | 27,600                       | 26,600            | 31,300      | 46,100  |
| •                   | hydroxy-carbamazepine | 50                        | 170    | 800          | 800                          | 790               | 990         | 1,200   |
|                     | Epoxide-carbamazepine | 510                       | 4,100  | 19,500       | 19,700                       | 19,000            | 22,700      | 33,600  |
|                     | Gabapentin            | 4                         | 50     | 230          | 240                          | 230               | 270         | 390     |
|                     | Lamotrigine           | 570                       | 6,200  | 29,100       | 29,500                       | 28,400            | 33,700      | 50,200  |
| Antidepressants     | Diazepam              | 10                        | 120    | 610          | 600                          | 660               | 1,200       | 400     |
|                     | Venlafaxine           | 5                         | 50     | 250          | 270                          | 230               | 210         | 410     |
| Antimicrobials      | Enrofloxacin          | 0                         | 3      | 10           | 10                           | 10                | 10          | 20      |
|                     | Sulfamethoxazole      | 20                        | 30     | 160          | 150                          | 200               | 200         | 70      |
|                     | Thiabendazole         | 1                         | 10     | 60           | 60                           | 60                | 70          | 100     |
|                     | Trimethoprim          | 0                         | 10     | 80           | 60                           | 80                | 130         | 40      |
| Antiparasitic       | Crotamiton            | 1                         | 20     | 80           | 80                           | 80                | 100         | 130     |
| Corrosion inhibitor | Benzotriazole         | 10                        | 200    | 930          | 940                          | 910               | 1,100       | 1,600   |
| Hypolipidemics      | Bezafibrate           | 160                       | 310    | 2,500        | 2,600                        | 2,400             | 520         | 3,700   |
|                     | Warfarin              | -                         | 1      | 8            | 7                            | 10                | 10          | 3       |
| Psychoactives       | Caffeine              | 20                        | 250    | 1,400        | 1,500                        | 1,300             | 1,200       | 1,900   |
|                     | Cotinine              | 1                         | 6      | 30           | 50                           | 10                | 20          | 50      |
|                     | Nicotine              | 40                        | 380    | 2,100        | 2,200                        | 2,100             | 2,100       | 3,000   |
| Sweetener           | Aspartame             | 2                         | 40     | 220          | 210                          | 220               | 300         | 300     |
| Sum →               |                       | 2,300                     | 17,700 | 85,700       | 87,000                       | 83,700            | 96,700      | 143,800 |

Hazard quotient = 
$$\frac{\text{Exposure level (current study)}}{\text{ADI or TTC (literature data)}}$$



Mean concentration (produce)

X

Mean consumption (produce)

**Maximum** concentration

X

**Mean** consumption

**Maximum** concentration

X

95<sup>th</sup> percentile consumption

#### **ADI**, hazard quotients for worst-case exposure scenario

|                        |                   | <b>General population</b> | <b>Vegetarians</b> | <u>Arabs</u> |
|------------------------|-------------------|---------------------------|--------------------|--------------|
| Class                  | Compound          |                           |                    |              |
|                        |                   | ADI based                 | ADI based          | ADI based    |
| Analgesics             | 4-Aminoantipyrine | NA                        | NA                 | NA           |
|                        | Acetaminophen     | 0                         | 0                  | 0            |
| Antiarrhythmics        | Atenolol          | 0.01                      | 0.01               | 0.01         |
|                        | Bisoprolol        | NA                        | NA                 | NA           |
|                        | Sotalol           | NA                        | NA                 | NA           |
|                        | Carbamazepine     | 1.13                      | 1.30               | 1.92         |
|                        | 20H-carbamazepine | 0                         | 0                  | 0            |
| <b>Anticonvulsants</b> | EP-carbamazepine  | NA                        | NA                 | NA           |
|                        | Gabapentin        | NA                        | NA                 | NA           |
|                        | Lamotrigine       | 0.04                      | 0.04               | 0.06         |
| Antidonrossants        | Diazepam          | 0.06                      | 0.11               | 0.04         |
| Antidepressants        | Venlafaxine       | NA                        | NA                 | NA           |
| Antimicrobials         | Enrofloxacin      | 0                         | 0                  | 0            |
|                        | Sulfamethoxazole  | 0                         | 0                  | 0            |
|                        | Thiabendazole     | 0                         | 0                  | 0            |
|                        | Trimethoprim      | 0                         | 0                  | 0            |

#### Main findings and conclusions



- Irrigation with treated Wastewater is a MUST;
- Quality of reclaimed wastewater MUST be IMPROVED;
- For mean and high exposure sensations → no human health concerns were predicted.
- For the worst-case scenario, hazard quotients indicating possible human health concerns;
- What next Better Regulation, Treatment & Agricultural practices.

